ICE GUARDTM

Installation Operations & Maintenance Instructions

AESSEAL plc

Complex Systems Division, Mill Close Bradmarsh Business Park, Rotherham, S60 1BZ

> Telephone: +44 (0) 1709 369966 Fax: +44 (0) 1709 720788

> > www.aesseal.com

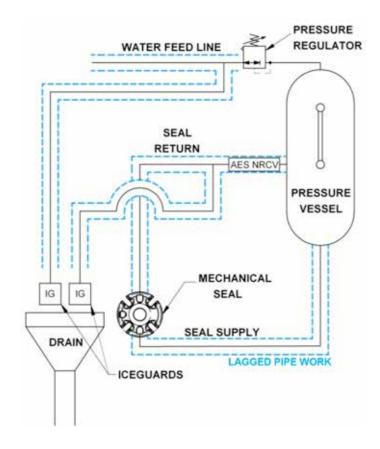


FIG.1 ICEGUARD™ Configuration 1

PRESSURE REGULATOR ICEGUARD SEAL RETURN AES NRCV ICEGUARD PRESSURE REGULATOR PRESSURE VESSEL MECHANICAL SEAL SEAL SEAL SUPPLY

LAGGED PIPE WORK

FIG.2 ICEGUARD™ Configuration 2

Introduction

The ICEGUARD™ is designed to give complete protection against freezing temperatures to the entire seal support system. To ensure that it performs as desired, the ICEGUARD™ is supplied as two parts. Both must be installed as per the instructions to achieve optimum freeze prevention.

It is imperative to the performance of the ICEGUARD™ to ensure that all pipe work in the system is lagged as detailed in Figures 1 and 2. Exclude only the two ICEGUARD™ valves detailed in Figure 3 from lagging.

Installation & Commissioning

There are two different configurations that the ICEGUARD™ can be installed in. Both will prevent your seal support system liquid from freezing. Configuration 1 is for a quick, simple install. Configuration 2 enables the discharged liquid to be directed to a safe drain area.

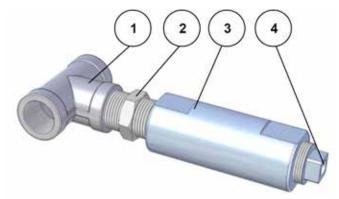


FIG.3 ICEGUARD™ Details

Configuration 1

- Connect one ICEGUARD™ product into the vessel water feed line, before the pressure regulator as shown in Figure 1.
- Connect the remaining ICEGUARD™ product directly into the AES NRCV (Non Restrictive Reverse Flow Prevention Valve), and then connect the AES NRCV into the Pressure Vessel.

Configuration 2

- With reference to Figure 3, separate the T-piece (1) from the Hex Nipple (2) using appropriate spanners. Repeat this step for the remaining ICEGUARD™ also.
- Connect one T- piece into the vessel water feed line, before the pressure regulator as shown in Figure 2.
- Connect the remaining T-piece into the AES NRCV (Non Restrictive Reverse Flow Prevention Valve), and then connect the AES NRCV into the Pressure Vessel.
- Add sufficient pipe work between each T-piece and each coupling arrangement to allow the ICEGUARD™ to be
 directed to an open drain area, whereby it can be recycled, as shown in Figure 2.

Installation Considerations

- Ensure that an appropriate thread sealant is used when connecting all components.
- Ensure that the drain is a wide open area to allow free discharge from the ICEGUARD™
- The maximum operating temperature of the ICEGUARD™ is 150°C.

Health and Safety

- It is imperative to the performance of the ICEGUARD™ to ensure that all pipe work in the system is lagged as detailed in Figures 1 and 2. Exclude only the two ICEGUARD™ valves detailed in Figure 3 from lagging.
- Pipe relief valves must discharge to a safe area.
- This system has been designed for use only as a barrier fluid system for mechanical seals using water as barrier fluid.
- Electrical connections must be made in compliance with applicable legislation and / or local requirements by a competent / qualified electrician.
- Do not over-pressurise the system beyond 10 bar (g). If there is any possibility of over-pressurisation the system must be fitted with a suitable protection device.
- The system may get hot in operation with risk of burn injury, and suitable engineering controls or guarding should be adopted where necessary.
- Ensure that the plant water line does not exceed 10 bar (g).
- Do not exceed the operating limits of the system. Not designed for cyclic loading.
- Ensure that there is a suitable valve positioned on the water feed line so that the ICEGUARD™ positioned in the water feed line can be isolated and removed for any maintenance.
- The system may get hot in operation with risk of burn injury. Suitable engineering controls or guarding should be adopted where necessary.
- Ensure the system is completely leak free before full operation.
- If the fluid becomes contaminated it is recommended that the barrier fluid is replaced taking necessary precautions.
- Isolate the process and power on installation, maintenance and decommissioning (and ensure that the system pressure has been relieved before undertaking maintenance)

Environment

At end of life the barrier fluid and system should be disposed of in accordance with local regulations and with due regard to the environment.

Maintenance

• The system should be maintained in accordance with site standards.